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ABSTRACT

In this paper we investigate the relationship between the stretching
tensor D and the logarithmic (Hencky) strain 4ny, with ¥V the left
stretch tensor. We establish the simple formula

R~ oy’ - eym (RRE ,

which holds for arbitrary three-dimensional motions. Here F is the
deformation gradient, (#ny)° is the time derivative of £ny measured in a
coordinate system which rotates with the left principal strain axes, and §

v is the spin of the right principal strain axes. We use this formula to show
that D = (2nyf, (or, equivalently, [ = (&ny)* , the Jaumann derivative of
4nY) , if and only if the characteristic spaces of the right stretch tensor
* U are constant on any time interval in which the number of distinct
principal stretches is constant. Finally, we show that the asymptotic
approximation

RB= (2ny)* + 0(53)

holds whenever the displacement gradient H satisfies g,ﬁ = 0(€).
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\\ SIGNIFICANCE AND EXPLANATION
;inxperimentalists often report strain data using logarithmic measures of

strain, and these measures have also been utilized extensiQely for theoretical
purposes in the recent engineering literature. \:W:lth V=2 1£ i ® £ i
(summation implied) the left stretch tensor, we define the logarithmic
(Hencky) strain tensor by 2&ny = (lnki) giQD‘gi. The Ai and £, are
referred to as the pfinéipal stretches and left principal axes of strain,
respectively. ~ihis logarithmic strain measure has been shown to have certain
advantages in the formulation of the deformation theory of plasticity.-\

Whenever the principal axes of strain are fixed throughout the motion, it
is known that the simple relationship

D = (2ny )

holds, with D the stretching tensor. Previous work, however, has failed to
find an analogous formula in the general case. Some researchers have
therefore concluded that the Hencky strain measure has very limited
applicability.

" The purpose of this paper is to extend the abeowe- formula to arbitrary
three~dimensional deformationsr‘ We are able to find a simple relationship
between P and (&nY)°, where the time derivative of £iny is now measured
by an observer rotating with the £ By generalizing the idea of fixed

principal axes, we show precisely when the exact formula D = (£n¥)? holds.

We conclude by showing that, for sufficiently small deformations, (lnz)* is

an excellent approximation to p.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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ON THE RELATIONSHIP BETWEEN THE LOGARITHMIC
STRAIN RATE AND THE STRETCHING TENSOR

Morton E. Gurtin and Kathleen Spear*
l.. Introduction.

The logarithmic strain introduced by Hencky [3] has long L

enjoyed favored treatment in the metallurgical and materials

! . science literature, where it is referred to as the "true" or
- *natural® strain. Its use, however, has been primarily limited
h

to studies in which the principal axes of strain are fixed. 1In

such problems, the simple relationship

R=(a®°

exists between the stretching tensor D and the logarighm of
the left stretch tensor Y.

In this paper, we investigate the question of whether an
inalogous:olation-hip exists for general three-dimensional
deformations. Truesdell and Toupin [9]1 note that the Hencky
strain has never been successfully applied in general. Recent
attempts to remedy this situation include the work of Hill (4],
who argues that logarithmic strain measures have inherent
advantages in certain constitutive inequalities. He finds the

rather complicated relation

{"u’ t=3
(8 Wy = Lopgmay o gradad, 14,

) a
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with the components of (4n §J)° and D taken with respect
to eigenvector bases of | and Y, respectively. (Here [} |is
the right stretch tensor and the 11 are the principal stretches;

i.e., the eigenvalues of U.)

Both Hutchinson and Neale [S] and Storen and Rice [8) find
Hencky strain to be useful in the formulation of the deformation
theory of plasticity, although Stéren and Rice decide that the
general relation between D and (4n §)° is "very complicated”.
They conclude that 4n | is "essentially intractable” as a strain
measure. Fitzgerald [1) decides that the utility of logarithmic
strain is limited to problems with fixed principal strain axes.
In addition to this negative concensus on the applicability of
Hencky strain measures, the above authors all consider only
strains for which the principal stretches are distinct, and
do not rigerously treat the possibility that the principal axes
of strain may not be uniguely defined.

We here attempt to give a complete answer to the general

three-dimensional problem. We begin by establishing a simple

general formula relating D and 4n V:

R= (4n V° - sym(EQE).

Here F is the deformation gradient, 5% is the spin of the right
principal axes of strain, and (in {)° is the time derivative of
{n ¥ measured by an observer rotating with the left principal
axes of strain. We use this formula to prove that D = (in ¥)°
(or, equivalently, D = (4n 2)*, the Jaumann derivative of 4n V),
if and only if the characteristic spaces of {J are independent

of time on any time interval in which the number of distinct
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principal stretches is constant. Finally, we show that for
AN motions which are small in the sense that the displacement gradient

b H=F -] satisifes [ = 0(€), § = 0(€), we have the estimate

p=(ny”* + o).

since the error term is two orders-of-magnitude higher than
:_! (4n V)', we conclude that (4n y)' is, in fact, an excellent
; ' approximation to R in this instance.
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2. Prel:lm:lna:ies.l

Consider a motion of a body, and let F(t) denote the
deformation gradient corresponding to a given material point.
At each t (in a fixed time interval) FE(t) is a 3x3 matrix
with strictly-positive determinant, and hence admits the polar

decomposition
L= - R

where {(t) and Y(t) are symmetric, positive-definite, while
R(t) 1is proper orthogonal. § and Y, respectively, are called
the right and left stretch tensors. We assume that J is smooth
(i.e., continuously differentiable); then

L =fr? | (1)
is the velocity gradient,
R=sym k= FL)
the stretching tensor, and
X = kv = 3L

the spin tensor. (Here ;.:r denotes the transpose of L.)
The principal stretches are the eigenvalues 11, i=1]1,2,3,
of § (or Y); since | is smooth,z we may, without loss in

generality, choose the three functions A (t) to be smooth3

l'wo follow the notation and terminology of [2].
2ce. (2], p. 23.

3ce. Kato [6], Thm. 6.8, p. 111.
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in t. An orthcnormal basis [;4] of eigenvectors of [ (where ';1
corresponds to ;) is called a right principal basis. We assume
that one such basis [;1] is given, and that each g, (t) is smooth1
in t. Then {3,.4} defined by

4 = REy
is a left principal basis; that is, {gi} is an orthonormal basis of
eigenvectors of Y corresponding to [ki]. In view of the spectral

thoorcn.z we have the representations

L=hp 05, L= hy 94
Here a ® b with components ’1bj is the tensor product of a
and b, and summation over repeated indices is implied. Also,

=M 5. (2)

The characteristic space for U at time ¢, corresponding to
the principal stretch xi, say, is the set of all vectors 'g such
that

RO = A ()Y,

so that coincident principal stretches correspond to the same
characteristic space.

Let {21] be a smooth, time-dependent orthonormal basis. Then
the corresponding twirl tensor (Q is the skew tensor function

defined by

lrhis is an assumption: U smooth does not necessarily yield the
existence of a smooth basis [51] (cf. Kato [6], Example 5.9, p. 1l15).

zC!., e.g., [2]), p. 11,




g = .

(Q is skew since 28y = 61:] implies that nij + Oji -

’-1':°-j + §‘i-‘e~j = 0.) Given any smooth tensor function A, the
go-rotational derivative A® of A relative to {g;} is defined

by

A =A+rQ-0

~ e L

and represents the time derivative of A measured by an observer

rotating with [g,i(f.) }. Another important notion is the Jaumann

1

derivative A* of A, given by

* .
A o=hvN-w

with % the spin.

Finally, the tensor logarithm, 4in, maps symmetric, positive-
definite matrices into symmetric matriges and is defined to be
the inverse of the exponential function. 1In particular,

= «n Nz, ® 1., in Y= @n ML, ® 2,. (3)

r(:t.. e.g., (71, p. 155.

o g Nt e e e Y R R - . . . . e e
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3. Relationship between D and (in ).
Theorem 1. Let Q. denote the twirl tensor corresponding
to [Ed] and ( )* the co-rotational derivative relative gé
(£;3. Then
R= (o p® - sym(EQ M. )

Proof. Differentiation of (3) 2 gives

(oY = (/A4 04 + (tn A}, 04 + (dn A4 @4

=/ O 4 + QU Y - (a WG,

with Q, the twirl tensor corresponding to [i‘d.]' "Thus,

(o Y° = (,,/0)4 © 4.

Next, by (1) and (2),

E.; (11£1 ez + 1*;1 e + llii ® éi)(%% Ey ® ﬁj)
- By o4 ¢ eg - B

= a P +.8 -zor

This completes the proof, as (4) is the symmetric part of (5).

Since

“a P’ = a Y’ + (a PY - Kita P,

(4) may also be written in the form

(5)

.......................

.........
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D= n Y+ (n V(W - (W (n Y - symELE s (6)

we will use (6) in later calculations.

Remark. The term g_grg,'l represents the spin of the right
principal basis [;4} as measured by an observer deforming with
the body. (Let [zi] be a basis fixed in space, and {21] a basis
deforming with the body, i.e., gi =Ry Then the components of
.8, relative to {y,] are the same as those of &g‘_’l relative

to [;;1].)

Remark. Similar arguments show that

R =Rt P°K - symzgE ™,

where ( )* is the co-rotational derivative relative to {;:4],
rather than {1._1]. . . !




4. When does D = (in Y)°?
In.ghil section we present a condition on the principal strain

axes undér which the formula D = ({n !)‘ is valid. To state this

result precisely it is necessary to extend the notion of fixed

principal axes of strain. This idea makes no sense when

two or more of the princi§a1 strains coalesce, for at those

times the axes are not. uniquely defined. The characteristic

spaces, however, are uniquely defined, but change in type depending

on the number n(t) of distinct principal stretches: when

n{t) = 3 the characteristic spaces are three mutually perpen-

dicular lines; when n(t) = 2 the characteristic spaces are a

line and a plane perpendicular to it; when n(t) = 1 éhe char-

acteristic space is all of m3 . Thus it only makes sense to

demand that the characteristic spaces be independent of time

on time intervals during which n(t) remains constant.

Precisely then, let n(t) denote the number of distinct

principal stretches at time t. We say that the right principal

axes are essentially fixed if the right stretch tensor u has
characteristic spaces which are fixed in time on any time

interval during which n(t) is constant.

We are now in a position to state our main result.

Theorem 2. The following are equivalent:
(a) The right principal axes are essentially fixed.
(b) The co-rotational derivative of 4n ¥ corresponding

to the left principal basis {¢;] satisfies

R= (tny°.
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(c) The Jaumann derivative of 4n ¥V satisfies

R= (.

This theorem has the following obvious

corollary. Suppose that the three principal stretches are

distinct. Then the formulae

B=(aY°, D= (ay”

hold if and only if the three right principal axes are fixed for

all time.

Of course, the right principal axes are the three lines
generated by the basis vectors X

The next two lemmas facilitate the proof of Theorem 2. 1In
these lemmas and in their proof, 94:
the twirl tensors corresponding to the right and left principal

bases, {r,} anda {g1].

and Q,, respectively, denote

Lemma 1. Let T be a time interval of nonzero length on
which n(t) is constant. Then the following are equivalent:
(1) During T the characteristic spaces of U are

independent of time.

(1) QU=ug on T.

.4
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Proof. We begin by noting that
Byt (R -8WEy = Uk 02y - £y B0k,
n

= (-d gy BEy.
Case 1 (n=3).

By (7), (ii) is equivalent to Q. =0 on T,
and since ti = 8.5, (1) and (ii) are equivalent. ’

Case 2 (n=2), Here (using the spectral theorem) we may,

without loss in generality, write U or T in the form
glt) = A (65 (8) © £y () + Ay(t) [I-F, (tIeg, (v)],

so that the line spanned by ;1(t) and the plane perpendicular
to g, (¢) Assume that (ii) holds.
Then, since 11 12, we conclude from (7) that

are the characteristic spaces.

E k) = K3 8Ky = 0 (8)

on T. Thus
B35y " K1°E3 = O,
and since 21'51 = 0, we have t 3 constant on T, which implies (i).

Conversely, if (i) holds,
shows that (8) is valid. Condition (ii) then follows from (7).,

the above argument in reverse

as *2 = 3; on T.

Case 3 (n=1). Here

glt) = Ae)L

i e i A |
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on T, and the conditions (i) and (ii) are satisfied identically.

This completes the proof of Lemma 1.

Lemma 2. The following are equivalent:

) (1) The right principal axes are essentially fixed.
| (11) Q.4 = g8, (for all time).

Proof. That (ii) implies (i) follows trivially from Lemma 1.
If (i) holds, then 9: commutes withA U on all time intervals
s of nonzero length during which n(t) is constant (by Lemma 1).
E In view of the continuity of the A, (t), n(t) is piecevise
! constant, and for any time to at which n(t) jumps there are

right and left intervals (a,to) and (to /b) of nonzero length
on which n(t) is constant. Continuity of Q. and § then
gives (ii).

Proof of Theorem 2. (a) » (b). By (4), D = (4n Y°* is
equivalent to sm(mrg'l) = 0. Since

=1 -1, .7
FOE © = RRAY OIR,
the latter condition is equivalent to the requirement that
-1 -1
TR iy

or equivalently

229.,- - 9,512- (9)
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As is known,l a symmetric tensor A commutes with a tensor B it
and only if B leaves invariant the characteristic spaces of A.
Thus, since the characteristic spaces of  and !2 coincide,
(9) is equivalent to (ii) and hence (i) of Lemma 2.
(a) » (c). Assume D = ({n Y) . Then, by (6),
(40 Y (80 - (8,0 (tn V) - symEGE™ = Q.

Since W = Q, - skw(EQE D),

(n Pokw(EQEY) - skw(EQEH) (4n P - symEGE™) = Q.

Using ¥ = m'r and the isotropy of 4n

R0 P akw(g@u ™) - skwg@u ™) (ta p - sym(gg ™ HIg" = 0,

or equivalently,

o » e U law - e ylow e p =~ eyt -ulgu.

Since U commutes with 4n 3,

(P wieraud - wlgraud wny = gig - g9k (10)

As before, we will show that U commutes with g‘ by showing
that Q  leaves invariant the characteristic spaces of . Thus
fix the time ¢, let A denote a principal stretch and A the
corresponding characteristic space for U = J(t), choose w € A,
and let

- 8 2

Applying (10) to w and noting that

lct., e.g9., (2], p. 12,

Ty
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Py = 2%, (o Py = (in Ny,
we arrive at
(4n g - (4n NP (Per’n) = yix - 2% (11)

Let B be a principal stretch with B # A and let g be a
corresponding eigenvector, so that e.w = 0. Then taking the
inner product of (11) with e yields

(an B - ta N (B%2%) (g = (B2-2%) (g .

Thus either g-x = 0 or

wfa ’5:—:;; (12)
and, as we shdll show at the end of the proof, (12) implies that
B=A. Thus g-.x = 0. We have shown that x is orthogonal to
all characteristic spaces except A. Hence x € A and gt
leaves invariant the characteristic spaces of .

Conversely, if Q.  commutes with 3, then Q.  commutes with
4n JY. Since J commutes with 4n Y, equation (10) holds trivially,
and reversing the arguments leading to (10) yields the condition
p=(tay”.

Thus (c¢) is equivalent to (ii) and hence (i) of Lemma 2.

To complete the proof we have only to show that (12) implies
A= B. Thus let p = 4n(B/A). Then (12) is equivalent the equation

p = tanh p.
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Since the derivative of tanh p is lccth £ 1, with equality

holding only at p = 0, the graphs of p and tanh p intersect
only at p = 0. This completes the proof of Theorem 2.
Remark. Some other relations which hold when the right

principal axes are essentially fixed are

(g = =gy - KR

KO ST VLU W= S Y

ARnE Aaat Ahn i Bl SNl )




16

5. (4n w‘ approximates D.
As we have noted in the last section, D = ({n !). only in

- L L
- . >-.'vl

very special circumstances. We now show that (4n !). is, however,
a very good approximation to D when the deformations are suffi-
ciently small and slow. More precisely, consider a one-parameter
family ge(t) of deformation gradients, depending on a small
parametef €, and assume that the displacement gradient

Be= e & (13)

satisfies
Be= 000, He=0(9 ' (140 -

as € - 0. Here and in what follows we work at a particular time
t, and for convenience we shall drop the subscript € and the
quantifier "as . € = 0" in subsequent equations.

Theoxem 3. The restrictions (14) imply that

D=(ay" +0(e, (15)

Proof. We begin by listing three estimates which will be

useful in what follows:
27 Ve
. . - 1

awi=g+ia-3a2+oapd, (16)

=1 -2a+0(al?,

Wy = A -3 a7 +ouald

AT, SEDTSAE R S VR S - PSR YORE T Sy Dttt i P PP SN WA SR 1




17
1
as JAl -0. In (16),, A is arbitrary; in (16)2'3, A is
symmetric. o
our next step will be to estimate the right side of the
! identity
-
- (Y = (aY*' + (tn YK - W 40 ¥, Coan
Let
E=smB g=skvi
Then by (13),
2 T T
Y = =r+22+0
and (1.6)2'3 yield
L=%+k+ FE-ED + 0, 18

my=p+3m - rcw, gw = o),

To derive an asymptotic expansion for (4n ¥)° we write K(H)

for {in Y with Y| considered as a function of H. Then (18),
is the Taylor expansion

B =KQ + K@ + K QEE+c®, 09

where K'(Q) and K"(Q). are the first and second (Frechet)
derivatives of KX at Q, with K'(0)[H] 1linear in §,
K°(0) [}, ,},] symmetric and bilinear in (H,,},). If we
differentiate (19) with respect to ¢t, we arrive at

KD ) = K Q) + KO + @ .

AP R S PR .. ’ Y L L PRSPPI W WP U S Nl SR T G St Yo
[ VRN TR S PO UL U, - - UL ST Ty W M. W A A NPT Y PV WY s
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On the other hand, if we expand X'(H) about H = 0, using (14)

we get

K®IE =~ K QIR + KRR + o).
Hence

e’ = 0(€,

and differentiating (18)2 with respect to time yields, after some

work,
(tny)* = E - sym(HE) + GE - EG + 0(€D). (20)
Next,
L= = ggrpso(e)
=H-gg+o(e,
and so
D= -ym‘;.,-é- lym(ég) + 00,
(21)

!- .kwk-.é{» 0(52).

The ost:l.natgs (17), (18),, (20), and (21) imply the desired result (15).

Remark. Since D = 0(€) and (4n y)' = 0(€), the asymptotic
expansion D = (4in y). + 0(63) shows (4n Y)* to be an excellent
approximation to D when Ji and & are small.
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